skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Goldsmith, Paul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We examine the azimuthal variations in gas-phase metallicity profiles in simulated Milky Way-mass disc galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulation suite, which includes a sub-grid turbulent metal mixing model. We produce spatially resolved maps of the discs at z ≈ 0 with pixel sizes ranging from 250 to 750 pc, analogous to modern integral field unit galaxy surveys, mapping the gas-phase metallicities in both the cold and dense gas and the ionized gas correlated with H ii regions. We report that the spiral arms alternate in a pattern of metal rich and metal poor relative to the median metallicity of the order of ≲0.1 dex, appearing generally in this sample of flocculent spirals. The pattern persists even in a simulation with different strengths of metal mixing, indicating that the pattern emerges from physics above the sub-grid scale. Local enrichment does not appear to be the dominant source of the azimuthal metallicity variations at z ≈ 0: there is no correlation with local star formation on these spatial scales. Rather, the arms are moving radially inwards and outwards relative to each other, carrying their local metallicity gradients with them radially before mixing into the larger-scale interstellar medium. We propose that the arms act as freeways channeling relatively metal poor gas radially inwards, and relatively enriched gas radially outwards. 
    more » « less
  2. Abstract The mass distribution of dense cores is a potential key to understanding the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C 18 O ( J = 1–0) data, we identify 2342 dense cores, about 22% of which have virial ratios smaller than 2 and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores that are not associate with protostars has a slope similar to Salpeter’s initial mass function (IMF) for the mass range above 1 M ⊙ , with a peak at ∼0.1 M ⊙ . We divide the cloud into four parts based on decl., OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 M ⊙ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5–10 M ⊙ . From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5–30 freefall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi–Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores. 
    more » « less
  3. null (Ed.)
  4. Abstract One of the most poorly understood aspects of low-mass star formation is how multiple-star systems are formed. Here we present the results of Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations toward a forming quadruple protostellar system, G206.93-16.61E2, in the Orion B molecular cloud. ALMA 1.3 mm continuum emission reveals four compact objects, of which two are Class I young stellar objects and the other two are likely in prestellar phase. The 1.3 mm continuum emission also shows three asymmetric ribbon-like structures that are connected to the four objects, with lengths ranging from ∼500 to ∼2200 au. By comparing our data with magnetohydrodynamic simulations, we suggest that these ribbons trace accretion flows and also function as gas bridges connecting the member protostars. Additionally, ALMA CO J = 2−1 line emission reveals a complicated molecular outflow associated with G206.93-16.61E2, with arc-like structures suggestive of an outflow cavity viewed pole-on. 
    more » « less
  5. null (Ed.)